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A one-dimensional coupled set of equations consisting of appropriate forms of an 
equation of motion and a three-constant Oldroyd constitutive equation, used in the 
description of certain non-Newtonian flows, has been modeled using a finite-difference 
technique. These one-dimensional equations may be applicable along the centerline 
of a symmetric almost parallel flow field, where extensive molecular stretching occurs, 
with the restrictions of zero pressure gradient and zero shear. Mainly, this article differs 
from previous numerical work on these equations, such as Townsend’s work on a four- 
constant Oldroyd equation, in that the nonlinear convection terms, which did not appear 
in this earlier work due to the parallel flow being considered, are now present. In com- 
parison with the full set of equations, it is seen that the structure of the motion and 
constitutive equation used retain the essential characteristics of the complete set. In the 
equations, the time and spatial derivatives of both velocity and stress were centered so 
that in the Newtonian limit of zero relaxation and retardation times, the motion equation 
would reduce to Burgers’ equation with the diffusion term time lagged. Stability of the 
ditferencing scheme for the constitutive equation dictated that the convective derivative 
of the deformation rate be time lagged with respect to the convective derivative of the 
stress. A von Neumann stability analysis was performed on the model equation yielding 
restrictions on At based on the usual viscous condition and, in addition, on the con- 
vective inertial and elastic propagation velocities, and also on the time scale of the 
straining motion. As a test for the proposed scheme an initial-boundary-value problem 
was formulated. An analytic steady-state solution to the problem can be obtained in 
Lagrangian coordinates if a constant velocity and a linear stress-deformation rate 
condition are assumed at the inflow to the flow field. This analytic solution, expressed in 
Eulerian coordinates, was then used as a check for the iterated steady-state solution. 

I. INTRODUCTION 

The equations under discussion in this paper are 
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where u = u(x, t) and T = T(X, t), p is a constant density, and h, , r], , and h, are 
constants which will be identified later. Equation (1) is recognized as a motion 
equation which, in the limit of zero relaxation and retardation time (h, , X, --t 0) 
in the constitutive equation, reduces to Burgers’ equation. Equation (2) is shown 
in Section II to be similar to the three-constant Oldroyd constitutive equation 
proposed by Giesekus [3] to model the flow of polymer solutions. These equations 
are intractable analytically except in the simplest of flow configurations and there- 
fore to obtain solutions a numerical technique must be employed. Here, finite- 
difference techniques have been used to solve the above one-dimensional set of 
nonlinear model equations. 

Previous numerical modeling of the Oldroyd equation (Townsend [4]) has been 
in parallel flow fields, thus eliminating the nonlinear convection terms and hence 
some hyperbolic features of more general forms of the Oldroyd equation which 
describe the flow in nonparallel geometries. 

In the motion equation to be modeled, the time and spatial derivatives of the 
stress were differenced so that in the Newtonian limit of zero relaxation and retarda- 
tion times this diffusion term would reduce to a lagged centered spatial difference 
of the velocity. In the constitutive equation it was found necessary to lag the 
convective derivative of the velocity gradient with respect to the convective deriva- 
tive of the stress. Otherwise, the time and spatial derivatives were handled in the 
same manner as those in the motion equation. 

A stability analysis yielded the usual viscous and convective restrictions on dt. 
In addition, restrictions on dt due to the elastic propagation velocity and the time 
scale of the straining motion were found. 

Equations (1) and (2) lend themselves to an exact steady-state solution in 
Lagrangian coordinates. Thus, an initial-boundary-value problem can be formu- 
lated using these equations and the exact solution can be compared with the 
resulting Eulerian steady-state solution. 

It is hoped that the proposed system of differential and difference equations will 
serve as a basis for future investigators in the numerical modeling of non-Newtonian 
fluids. 

II. FORMULATION OF THE GOVERNING EQUATIONS 

The appropriate one-dimensional set of equations, (1) and (2), can be obtained 
utilizing the general equation of motion and a three-constant Oldroyd constitutive 
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equation for a dilute polymer solution (Giesekus [3]), with no shear thinning, 

where 

also ui = Ui(Xi , t) are the components of a general velocity vector, +(x, , t) and 
rij(xi , t) are components of a general second-order stress tensor, Sij = P(xi , t) 
are components of a general second-order strain rate tensor, P is the pressure, p is 
once again the constant density, A, is the relaxation time of the molecules, pO is 
the dynamic viscosity of the solvent, [v] is the intrinsic viscosity due to the presence 
of the molecules, and c is the concentration of polymer, xi are the components of 
the position vector, and t is the time. 

Consider a symmetric almost parallel flow field with zero pressure gradient and 
zero shear. Then from (3) and (4), the equations of interest on the centerline of this 
flow field would be 

1 aTll ?5+u1+- 
p ax 3 (5) 

where x = x1 . Note that in the equation of motion, Eq. (5), 712,2 and 713.3 were 
neglected relative t0 711.1 . This approximation should hold on the centerline in 
regions where extensive stretching of the molecules occurs, since here transverse 
gradients of the shearing stresses become unimportant relative to 711,1 . Finally, 
dropping the subscripts and identifying the constants in Eq. (2) gives the system of 
dimensional equations to be numerically modeled, 

(7) 
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An exact steady-state solution to these equations can be found. (The form of 
Eqs. (7) and (8) and the following exact solution are due to J. L. Lumley in a 
private communication.) First the nondimensional counterparts to (7) and (8) 
can be found by scaling with respect to some characteristic velocity and length 
scale U, and 1, respectively, 

au z+ug=g+2ag, (9) 

(10) 2 ; u g - 2w g + + = -2E [& + 21 g - 2 (g)‘], 

where w = T - 2p0(l + c[q]) u, , a = (1 + chl)/Rs 3 & = PIP,, , T = GM 
E = c[q]/Rs . If a steady-state condition is assumed the motion equation can be 
integrated immediately and gives 

~4~12 = w + 2ol(af4/ax) + const. (11) 

The constant can be identified if we assume no stretching at the inflow, w(x = 0) = 0 
and, in addition, unit inflow velocity and prescribed strain rate. Substituting the 
appropriate value for the constant into Eq. (11) gives 

(22 - 1) 
( 

au au 
2 = w + 201 ax - 7&- r=O - I 1 

Transforming now to Lagrangian coordinates, where d/dt = u@/ax), gives for 
(10) and (12), respectively, 

(f + G)(S) = E $ ($3 
cf + 2 $ lrso -&)(s, =a(+) -& 

Combining these two equations yields the second-order linear differential equation, 
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The solution can immediately be written as 

where 

I% 
( 1 I% 

and 

A0 

1 2 -- 
T > 

4’ 

+ 11. 

In this study, the case to be considered is 4iy(&/&) IxZo < 1, which, depending 
on the sign of the gradient, corresponds to either a decelerating or an accelerating 
flow field. Since 01 can be interpreted as the ratio of extension forces to inertial 
forces, the above case would correspond to dominant inertial forces in an accelera- 
ting flow field. For the purpose of this investigation, then, only a Lagrangian 
accelerating velocity field will be examined, thus restricting (au/ax) IrCO to positive 
values. In addition, the parameter T was taken to be unity so as to ensure a maxi- 
mum effect. For certain values of A0 and B, the solution for l/u2 in Eq. (16) has 
a zero, which implies that u + co at some point in the flow. Since the objective 
here is to effectively numerically model the various terms in (7) and (8), only 
flow fields, narrowed so as not to include the singular point, will be considered. 
Recalling that the solution in Eq. (16) is expressed in terms of a Lagrangian system, 
this solution must be transformed back to the Eulerian frame before a comparison 
can be made with the numerical results. 

In the transformation to Lagrangian coordinates, the initial displacement of 
the material point was zero, allowing the displacement of a material fluid element 
to be given by 

x(t) = s’ u[x(s)] ds, 
0 

(17) 

or, if the variables are a set of discrete points, 

-a) = i ~[xM(cT+l - ta). (18) 
q-1 
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One can then write for the Eulerian velocity, 

4-d = [x(b) - x(L,w~. (1% 

Now, the unknown variable x(t,) must be determined, and this is related to the 
known Lagrangian velocity in Eq. (16) by 

x(t,) = stL u(s) ds. 
0 

Since the values for U(S) can be determined from Eq. (16), the integral in Eq. (20) 
can be evaluated. This was done using Simpson’s rule and Newton’s 3/8 rule 
(IBM 3701168 subroutine DQSF). 

III. THE DIFFERENCING SCHEME 

The differencing scheme which was used was applied to the nondimensional 
counterparts of (7) and (8), which can be written as 

Ut + WC = 72 , (21) 

7 + T[T, + UT, - 2TU,] = 2au, + (2T/R,)[U,~ + uu,, - 22.&q (22) 

for ease of comparison with the exact steady-state solution. If the velocity is defined 
at the mesh point of the Cartesian computational grid covering the flow field under 
consideration and the stress is defined at points midway between the velocities, 
the following explicit difference scheme (Gatski [2]) can be used to model (21) 
and (22). 

Ul 
n+1 _ p-1 

3 %n(Phn) _ 87~~ 

2At + Ax Ax ’ 

+ 
pui=;:2(p8A+u,“-1) _ ~(A+u;-~)~ 

Ax 1 Ax* ’ (24) 
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where 

hn = $+1/i? - T,“-112 , p&din = (u,“,, - ui”_,)/2, 

EL.4& = hi”,, + %“)/2, PWm2 = (6+3/2 - 4hYZ 

A+uj” = u;+, - ujn, ,LL~A+u,“-~ = (ui”,i’ - ui”;l’ - uy + u;:;,1)/2, 

and here subscripts and superscripts refer to the spatial and temporal grid points, 
respectively. The truncation error of the difference approximations (23) and (24) 
to the system (21) and (22) is O(At, A?). 

IV. STABILITY OF THE FINITE-DIFFERENCE EQUATIONS 

A von Neumann stability analysis was performed on the linearized set of 
difference equations corresponding to (23) and (24), 

n+1 
4 - $-' 

2At 
+ U~(/lSUjn) 8Tjn 

AX =TiF (25) 

+ u&SA+U;-~) _ 2s,(A+u;-‘> 
Ax 1 Ax ’ (26) 

where U, is a local mean velocity and S,, and T,, are a local mean strain rate and 
stress, respectively. The eigenvalues of the resulting amplication matrix from the 
above equations were made to satisfy the condition I ki I < 1, where si are the 
roots of the characteristic equation of the amplification matrix. However, with a 
multilevel difference scheme the characteristic equation is a high-order polynomial. 
One possible method of extracting conditions on At from the characteristic 
equation is the following. 

A set of 2k conditions, developed by Cohn [l], on the real coefficients of a kth 
order polynomialf@ for the eigenvalues to lie within the unit circle are given as 

and 
f(l) z 0, (-l>"f(-1) > 0, I A, + A, I 3 0, 

I A, - A, I Z 0, s = 1, 2 ,..., k - 1, 
(27) 
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where 

lak ak-l "' ak-s+l \ 
0 0 ..a a, a, 

0 . . . a0 al 
A,= ; i i 4 a0 ..* as-3 a,-2 

a0 aI ... as-2 a,-, 
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Applying the above conditions to the characteristic equation yields necessary and 
sufficient conditions for the eigenvalues to lie within the unit circle. Now consider 
the characteristic equation obtained from (25) and (26): 

[2dt + Tj 5” + [42+ ($-) (At + T) sin y] i$ 

- [(2& + T) + T (1 - g sinz’2’) 
s 

+ 4 (~)” ( uo2T sin2 y - 8((~ + TT~) sin2 $)I 5” 

- [645(-$--)1Sosin2~+4Tu,(-$-)(I -&)isinysin2s] 5 

16dt . y 
+ T [I - R, sm2 T] = 0, (28) 

where y is a wavenumber times dx, following the usual procedure in the von - 
Neumann analysis, and i = 1/ - 1. Since the analysis only holds for real coefficients 
it is necessary to split it into two parts. The first consists of analyzing Eq. (28) 
with 7. = So = 0, 

[2dt + T] 5" - [4uo (--$) (dr + T) sin y] 5” 

+ [(241 + T) + T(1 - $$ siny'2)) 
s 

+ 4 (-$)' (uo2T sin2 y - 8 sin2 %) CL] 4” 

- [4Tuo ($)(l - & sin2 s) sin y] 5 

+ [T (1 - & sin2 +)I = 0, (29) 
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where i = it, and the second consists of analyzing Eq. (28) with u, = 0, 

[2At + T] 5” - [(2Ar + T) + T (I - g sinz’2)) 
3 

- 32 (-$-)’ (a + Tr,,) sin” s] [* 

- [64 -$ ($$)* So sin* -$] t + T [ 1 - $$-$ sin2 -$.I = 0. (30) 9 

The above equations would then yield a total of 16 conditions. Fortunately 
many conditions are redundant, and from the remaining conditions, restrictions 
on At can be extracted by arranging each of the conditions of (27) in powers of 
At/T. From these, rather restrictive conditions on At are found, 

At 
Ax2 ’ 

1 At ~-) ---A< 1 
16~ + 1 u,, I Ax Ax” -iqqmT’ 

(31) 
At 1 --- 

Ax* ‘is,] Ax” + (8/R,)’ 
T <2s” -2. 
” R, T ’ 

The first three of these conditions can combine to form the further inequality 

At/Ax” < 1/[16cu + / u. / Ax + 8 I 7. iI’* Ax + 4 I So I Ax2 + (8/R,)]. (32) 

Of course the most restrictive of these conditions depend on the magnitude of the 
parameters involved. The terms appearing in (32) can be easily identified; 1601 and 
8/Rs are simply viscous conditions, 1 u. I represents the C-F-L condition for the 
scheme, 4So is rather unique and requires that the time step be less than the mean 
deformation rate of the fluid motion, and, finally, 8 I 7. Ill2 can be considered as an 
elastic propagation velocity analogous to the usual C-F-L condition. The last 
of conditions (31) can be shown to be the criterion for the decay of a small- 
amplitude harmonic disturbance introduced into the linearized differential system 
of equations, (21) and (22). However, the main contribution to At/Ax* comes 
from the terms containing (y. and R, . Using only these terms in inequality (32), an 
estimate for critical At can be made for the two sample computations presented in 
Section VI. For the values of R,, c[v], and Ax given in the figures the linear 
stability analysis would predict a critical value of At of approximately 2.5 x 1O-4 
(a value of 2.0 x 1O-4 was used in the actual computation). Test runs indicated, 
however, that for the case c[~] = 1.0 a stable computation could be carried out 
at a value of At about 3.5 times greater than the predicted value, and for the case 
c[~] = 0 a value of At about 2 times greater than that predicted could be used. 
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These results indicate that although the linear stability analysis underestimates 
the critical value of dt it does provide for a reasonable and stable starting value 
for it. 

V. INITIAL AND BOUNDARY CONDITIONS 

The initial choice of values was dependent only on the transient phenomenon 
desired. Here only accelerating velocity fields were considered. Therefore, initially, 
a linearly increasing strain rate field was chosen, thus making the initial velocity 
profile parabolic. As for the initial stress, these values were chosen so that the 
boundary condition at inflow, ~(0, 0) = 2cu[&(x, 0)/8x] lzzO = 201 was satisfied, 
and in the remainder of the flow field T(X, 0) > 2@u(x, 0)/3x]. 

Considering now the boundary conditions, the inflow condition on the velocity is 

u,” = 1.0 3 (33) 

and on the stress and velocity gradient is 

au . rgn = 2or - ax By i.e., w(0, t) = 0. (34) 

Since the stress and strain rate are defined at locations one-half mesh spacing from 
the boundary, it was necessary to take an arithmetic mean of these quantities 
about the inflow boundary point x = 0. This type of average necessitates a 
knowledge of the velocity and stress exterior to the flow domain under considera- 
tion. In addition, the spatial stress gradients in the constitutive equation require a 
knowledge of an exterior stress point in the calculation at the first interior point 
of the flow domain. At each time level these two unknowns can be expressed in 
terms of known values within the flow field by simultaneously solving the boundary 
condition (34) with the motion equation at the boundary; the resulting expressions 
are 

UIfl = Uln - [4&(4~ + WI &, (35) 

rn1,2 = [(401 - dx)/(40! + dx)] $2 . (36) 

The only remaining boundary condition to be satisfied is the inflow deformation 
rate condition, [au@, t)/ax] lz+, = 1. Recalling Eqs. (9) and (lo), this slope 
condition, along with the inflow velocity condition, allowed this system of equations 

58I/I9/4-4 



386 THOMAS B. GATSKI 

to be solved more easily than would have been possible had an inflow and outflow 
condition on velocity been specified; but in the numerical computation, either set 
of conditions should be equally applicable. In doing the computation, the specifica- 
tion of an inflow and outflow velocity was chosen. The inflow condition has 
already been mentioned; now, the outflow condition must be considered. 

Since the Eulerian velocity profile can be calculated (Section II) up to the 
singular point in the velocity profile, consider the outflow boundary as being 
located near the singular point but at a point where the velocity is real and finite. 
Then, assuming small transient deviations of the calculated boundary velocity, the 
outflow velocity need only be obtained for the particular boundary point from the 
Eulerain velocity profile. 

As with the inflow boundary, exterior values of the velocity and stress are needed 
at the outflow boundary, specifically in the nonlinear convection terms in the 
constitutive equation. Here there is no boundary condition on stress and strain 
rate and the only equation available is the motion equation subject to the above 
assumption on small transient deviations of boundary velocity. The additional 
relation which is needed is found from an extrapolation of strain rate values. The 
fastest convergence was achieved by using the simple mean of a five-point spatial 
extrapolation and a three-point time extrapolation. This average value of the strain 
rate then allows the exterior velocity point to be found and substitution of the 
value into the motion equation at the outflow boundary allows the stress to be 
calculated at the exterior point, i.e., 

where J is the grid location of the outflow boundary. 

VI. SAMPLE COMPUTATIONS 

Using (23) and (24), test runs were made with R, and c[q] varied. Since the 
results for the accelerating velocity field being considered were qualitatively similar 
for different values of the solvent Reynolds number R, , with the flow field becoming 
narrower as the Reynolds number increases thus decreasing the size of dt, a 
representative value of R, = 10.0 was chosen. For this value of R, , two values for 
c[~] were used. The first is c[q] = 1.0, which should allow for substantial elastic 
behavior of the fluid, and the second is c[v] = 0, which should yield a Newtonian 
behavior of the fluid since the constitutive equation is solved by the usual linear 
relationship between stress and strain rate. 

A velocity profile at various times for R, = 10.0, c[~] = 1.0 is given in Fig. la. 
The transient behavior of the velocity at certain points in the flow field is shown in 
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FIG. la. Velocity profiles for R. = 10.0, c[v] = 1.0, with Ax = 3.0 x lo-%, and At = 
2.0 x 10-4. 
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FIG. lb. Variation of velocity with time for R, = 10.0, c[v] = 1.0, with Ax = 3.0 x lo-* 
and At = 2.0 x HP. 

Fig. lb. For the case R, = 10.0 and c[v] = 0, similar results are shown in Figs. 2a 
and 2b. It is easily seen that the velocity protie for ~$771 = 0 approaches the steady- 
state value more rapidly than for the case c[v] = 1.0; in addition, the oscillatory 
behavior of the transient vanishes for c[~] = 0, as would be expected from the 
form of Eq. (15). 
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FIG. 2a. 

EXACT SOLUTION 

SPATIAL DISTANCE, I( 

Velocity profile for R. = 10.0, c[v] = 0.0, with dx = 2.5 x IO-* and At = 2.0 x lo-’ 
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FIG. 2b. Variation of velocity with time for R, = 10.0, c[~] = 0.0, with Ax = 2.5 x 1O-2 and 
At = 2.0 x 10-4. 

ACKNOWLEDGMENTS 

The author thanks Professor John L. Lumley, who suggested the problem and whose timely 
counsel aided in its completion. The author is also indebted to Professor John Allen, whose 
suggestions for the differencing scheme were essential to the completion of this investigation. 
This work was supported in part by the U. S. Naval Ordinance Systems Command, through the 
Fluids Engineering Unit of the Applied Research Laboratory, and in part by the U. S. Office 
of Naval Research, Fhrid Dynamics Branch. 



NUMERICAL MODEL OF AN OLDROYD EQUATION 389 

REFERENCES 

1. A. COHN, Math. 2. 14 (1922), 131. 
2. T. B. GATSKI, The Numerical Modeling of an Oldroyd Type Constitutive Equation, M. S. 

Thesis, Pennsylvania State University, 1972. 
3. H. GIESEKUS, Rehol. Acru 2 (1962), 50. 
4. P. TOWNSEND, Rheol. Actu 12 (1973), 13. 


